
Availability, Scalability and
Security with Drupal

FOSDEM / DrupalCon 2005
david.monosov@futureinquestion.net

Availability, Scalability, and
Security with Drupal

Drupal is a web application written in PHP, its infrastructure
is composed out of a web server, a SQL database, and a
PHP interpreter
For all examples, we will assume your infrastructure of
choice is the Apache web server with a modularized PHP
interpreter and the MySQL database, running on either
Linux or *BSD, this is believed to currently be the most
common setup for running Drupal
Some of these examples will hold valid with a similar setup
based on Microsoft® Windows™ as the operating system of
choice, modifications required for this environment will be
noted where possible
A marginal number of these examples will also probably
apply if your web server of choice is Microsoft® IIS™, but
don’t take my word on it
This presentation is not really about Drupal at all ;-)

Why this presentation isn’t really
about Drupal?

Drupal is a web application - special, yet in
many ways, similar to others before it
Availability, scalability and security of web
applications is a widely documented
problem with many widely documented
solutions
Drupal does absolutely nothing to prevent
these solutions from being applied, in fact,
it has some facilities which makes doing so
trivially simple in comparison to other web
applications

Availability and Scalability –
Introducing Horizontal Scaling

The most common and affordable form of availability
is achieved through redundancy
The basic assumption is that if you throw more
hardware at it, not all of it will fail simultaneously
This is called horizontal scaling (as opposed to vertical
scaling, where instead of throwing more hardware at
a problem, we throw in bigger and better hardware
with intrinsic availability - e.g. hot swappable
components, RAID, etc.)
These scalability forms are complimentary rather than
exclusive - apply both to achieve Zen and sleep better
at night

Horizontal Scaling for Redundancy
in Practice

n+1 servers containing the entire
Drupal environment, configured for
fail-over. If one stops functioning, the
other picks up the workload
In the most basic configuration, the
servers operation is mutually
exclusive - thus, we achieve
availability, but not really any
scalability at all

Horizontal Scaling for Redundancy
in Practice (Linux)

The Linux-HA project provides a tool, “heartbeatd”
This tool allows for n+1 servers to check each other’s
“heartbeat”, each server has one or more real IP
addresses, and one or more virtual IP addresses are
shared between the servers on which the actual
Drupal site (and all its infrastructure) is provided
The site’s hostname (e.g. www.drupalsite.com) points
to the virtual address
If the active server fails, another takes its virtual IP
address and service continues nearly uninterrupted

http://www.linux-ha.org/
http://www.drupalsite.com/

Horizontal Scaling for Redundancy
in Practice (Linux) - Caveats

Only two:
All servers have to be aware of active
sessions, making the failover transparent
for users
The database needs to be shared and
kept up to date amongst all servers

Unlike many web applications, Drupal
stores it’s session data in the SQL
database, thus, there is really only
one caveat

Horizontal Scaling for Redundancy
in Practice (Linux) – Caveats

One solution is to hold the database
files on a networked, or otherwise
shared by means of SCSI/FC storage
array, and mount them to the active
server during the failover process
This is really rather simple, but not
entirely fool-proof and requires quite
significant investment in appropriate
storage technologies

Horizontal Scaling for Redundancy
in Practice (Microsoft® Windows™)

Microsoft® makes the Microsoft Clustering Services
available since Windows™ NT
It works properly since Windows™ 2000
It is only available in the ‘Advanced Server’,
‘Datacenter’ and ‘Enterprise’ editions, which incur
additional licensing costs
It offers all the same functionality of the “heartbeatd”
solution, and requires little more than a two-button
mouse to configure
Getting it to work with Apache and MySQL rather than
Microsoft® IIS™ and Microsoft® SQL Server however
might require losing some hair, and is left as an
exercise to adventurous members of the audience

Introducing Scalability

n+1 servers can be better utilized if
all of them are available to users
simultaneously, however, this
requires a mechanism to distribute
the load
The database then needs to be
available to all the servers
simultaniously

Scalability in Practice (Linux)
To achieve scalability we need to share the client load
between servers, this is called load balancing
There is a handy tool for this too, called Ultramonkey
Ultramonkey is a combination of “heartbeatd” and
IPVS
In this case, a virtual address is assigned to the n+1
Ultramonkey cluster, which, in turn, forwards the
requests to individual IP addresses of the n+1 real
web servers
These web servers, in turn, either access an external
MySQL server, or also act as a MySQL server and
replicate data between themselves

http://www.ultramonkey.org/
http://www.ultramonkey.org/
http://www.linuxvirtualserver.org/

Scalability in Practice (Linux) –
Handling MySQL

Since all servers can both SELECT and
INSERT, UPDATE, or DELETE data from the
database, having only one external MySQL
server which is accessed through the
network is the simplest solution
It is not, however, very reliable
Thus, an ideal solution would also include
n+1 MySQL servers, which would replicate
each operation amongst themselves,
running either as an additional database
cluster, or on each of the web servers

Scalability in Practice (Linux) –
Handling MySQL

MySQL offers master/master replication
It is known to work fairly well in MySQL 4.x
and up
Still not entirely fool-proof, and may cause
collisions if operations on the same data
are preformed by different servers
Sufficient for all but extremely mission-
critical setups
Database servers are easier to scale
vertically than horizontally

http://dev.mysql.com/doc/mysql/en/replication.html

Scalability in Practice (Microsoft®
Windows™)

Microsoft® makes the Network Load
Balancer (NLB) available since Windows™
2000
It is also available only in the ‘Advanced’,
‘Datacenter’, and ‘Enterprise’ editions of
various Microsoft® server products
In combination with Microsoft® Cluster
Services, it serves as a complete solution
with much the same functionality as
Ultramonkey

http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.mspx

Scalability in Practice (Other
Solutions)

There are commercial load balancers,
available as stand alone devices from many
vendors, including F5, Nortel, and many
others, some network switches also offer
load balancing functionality (e.g. those of
Extreme Networks)
For true high availability and scalability,
using a n+1 configuration of load balancers
is still advised

Security (Look Ma’, My Page Says
“w00t”)

There are no quick and simple
solutions for end-to-end security
which can be detailed over a few
pages of a presentation – unless
you’re trying to sell one
There are, however, a few best
practices which, if followed, would
make a setup a lot more secure

Security

Always grant only the minimal set of
privileges required to perform the
task
Firewall everything, everywhere
Log everything, everywhere, and
audit

Security (Drupal Specific)

The Drupal core is under constant review
by competent people, and releases can be
considered fairly secure
This situation changes drastically when
looking at the contributions repository
Do not use contributed code which hasn’t
been reviewed unless you are willing to
review it yourself, or have a good reason to
trust its author

Thank your kindly,

for allowing me to waste some of your time.

I hope you found it informative! ;-)

	Availability, Scalability and Security with Drupal
	Availability, Scalability, and Security with Drupal
	Why this presentation isn’t really about Drupal?
	Availability and Scalability – Introducing Horizontal Scaling
	Horizontal Scaling for Redundancy in Practice
	Horizontal Scaling for Redundancy in Practice (Linux)
	Horizontal Scaling for Redundancy in Practice (Linux) - Caveats
	Horizontal Scaling for Redundancy in Practice (Linux) – Caveats
	Horizontal Scaling for Redundancy in Practice (Microsoft® Windows™)
	Introducing Scalability
	Scalability in Practice (Linux)
	Scalability in Practice (Linux) – Handling MySQL
	Scalability in Practice (Linux) – Handling MySQL
	Scalability in Practice (Microsoft® Windows™)
	Scalability in Practice (Other Solutions)
	Security (Look Ma’, My Page Says “w00t”)
	Security
	Security (Drupal Specific)
	Thank your kindly,

